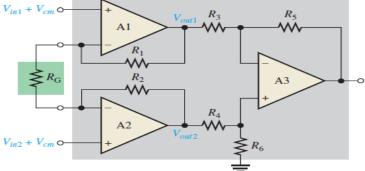
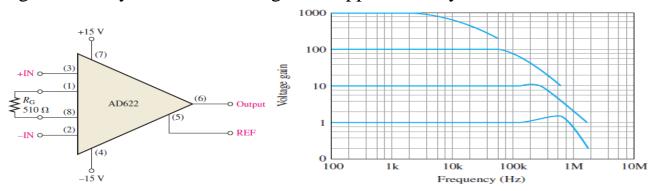
Faculty of engineering at shoubra Communication department ECE-322: Electronic Circuits (B)


Dr. Ahmad El-Banna Semester : Spring 2017

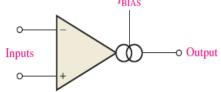
Sheet:4


Special-purpose Op-amp

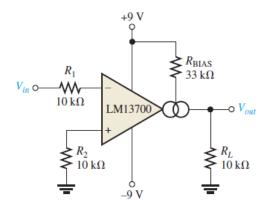
Circuits


1. Determine the value of the external gain-setting resistor R_G for a certain IC instrumentation amplifier with $R_1 = R_2 = 25 \text{K}\Omega$. The closed-loop voltage gain is to be 500.

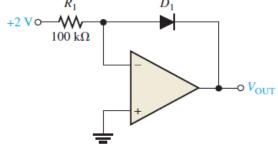
2. Calculate the voltage gain and determine the bandwidth using the graph in Figure. Modify the circuit for a gain of approximately 45.

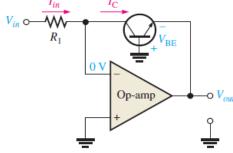


3. Determine the total voltage gain of the 3656KG isolation amplifier in Figure

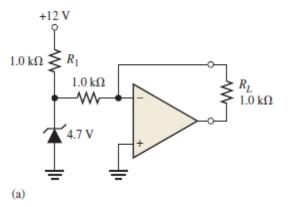


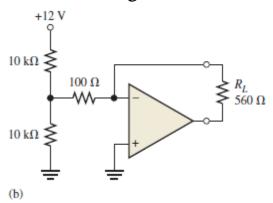
4. If an OTA has a $g_m = 1000$ mS what is the output current when the input voltage is 25 mV?


Based on K \approx 16 mS/mA calculate the approximate bias current required to produce $g_m = 1000$ mS.


5. The OTA in Figure is connected as an inverting fixed-gain amplifier where $+V_{BIAS} = +V$. Determine the approximate voltage gain. $K \approx 16 \text{ mS/mA}$

6. Determine the output voltage for the log amplifier in Figure. Assume $I_R = 50$ nA.


7. What is V_{out} for a transistor log amplifier with $V_{in}=3$ V and $R_1=68$ k Ω ? Assume $I_{EBO}=40$ nA.



8. For the antilog amplifier in Figure, find the output voltage. Assume $I_{EBO} = 40 \text{ nA}$.

9. Determine the load current in each circuit of Figure

